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SECTION I
ASYMPTOTIC FORMULAE FOR THE DISTRIBUTION OF HOTELLING'S TRACE
FOR TESTS OF EQUALITY OF TWO COVARIANCE MATRICES

1. INTRODUCTION

Let m S, and n S, be independently distributed W(m,p,zl) and W(n,p,zz),

1 2
respectively. Chattopadhyay and Pillai [ 1] have given asymptotic expansions

for the c.d.f. and percentiles of T = m TrS S'1 up to terms of order n'1 in

o 5
which the noncentrality was denoted by (F) = tr F = tr(B'lA - I),"the
deviation matrix'", where B = 211 and A = 251. In their paper, terms involving

fijfkl’"here fij is the (i,j) element of F, have been neglected. These terms
are taken into consideration in the section,and noncentrality is expressed in

the form (Fs) = tr F°. Table I gives tabulations to show the importance of

these terms. Furthermore, Chattopadhyay-Pillai (denoted by C-P
hereafter) expansions are extended to terms of order 1/n2. It may be noted
here that T = nUP), where UF) is the statistic studied by Pillai [2] for

the test of L and the power of this test against alternatives of a

1% %
one-sided nature was studied by Pillai and Jayachandran [3] for p=2.
Recently the exact non-null distribution of Hotelling's trace and tabulations
of the power of the same test for small and large deviation$of the parameters 1
were studied by Pillai and Sudjana [4] for p=3 and m=4. Some power
tabulations are presented in Table I up to terms of order n'z,which show

extremely good accuracy compared to the exact values given by Pillai and

Sudjana., Some additional tabulations of powers are also presented for p=4.

2. THE METHOD OF ASYMPTOTIC EXPANSION

The notations here as well as in the rest of the section follow
those of [1 ] and [ 5]. In order to describe the method we will first derive

an asymptotic expansion for the percentiles of T using which we will further




obtain that of the c.d.f. of T. It is well known [6 ] that the statistic
y=afTr S1 A can be written as t‘; ij: (m), where xi(l)'s are independent

central chi-square variables with m d.f. and A,'s, j = 1,...,p, are the

characteristic roots of U = A E'l. j
Let G(6) = Prin Tr S,A < 26).
Now note that
Prin Tr 5,8 < 20} = G, (8) = [F(e)]™'[g 3'¢* " at, o

where o = mp/2. In G(6), as a first approximation, for large n we may
replace Al by S, and consider
-1
G(6) = Pr{m Tr §1 §2 < 20}, (2)

Now we may, as suggested in [5 ], obtain a function h(sz) in the elements of s2
such that
-1
G(t) = Prim Tr §1§2 < 2h(§2)).
and then write h(sz) as a series with the first term being a linear function
of chi-square variables and successive terms of decreasing order of magnitude.
Ne get

-1
2

-1

Prim Tr §,S," < 2h(S,)} = '{ Prim Tr §,S;" < 2h(S,)[S,} Prids,}, (3)

where Pr{dsz} is the probability element of the central Wishart distribution

of S2 and R is the domain of integration of SZ' Now we may expand
1

Pr{n Tr §;S," < 2h(§2)|§2} about an origin (011"’22""'°pp’°12""’°p-l,p)
in a Taylor series, where
Nl (o) 1,301,000 )
Thus
-1
retn T 5,53 < 20055y
2 9
=toxpl I (8;4 - 0yy) 351} Pr (a Tr SA < 2hA”))
t<Jnl 1 o i

N —— ,.,____—‘ —_— — j




TIPSy

= {exp[Te(S, - A" 1)3]} Pr m Tr S.A < 20A™ 1y},
fp = A By S 2hiA

where
3 129 1
-a-m 2 3612 2
1 ) 12 ) 1
a(pxp) = (-(1 ’ 6 )—) = S~ e —..0......'—
2 iJ’ 3% 2 3021 3022 2
1 3 1 3 ?
2 3opl 2 aopz a3 -

(6)

where 61] is the Kronecker delta. Hence substitution of Eq (5) into Eq (3)

and term by term integration for sufficiently large n gives

6(0) = [ exp[Tr(S, - A"1)3) Pr (n Tr SA < 2h(A"")} Pr{ds,)
R

=8 prim Tr S,A < 20471},

where

® « expl-Tr AMo) (it AV,

[ 15,1 F /2 expirecs, 2 (nr22ms,)5,
R

= exp[-Tr A"13] |1 - (2/n) A7 3|~ (V/2),
Now using [ 7], we get
= 1 1 4
0% 1 n Zc’rs %u %t %ur * ;2' {Tzarsotuaw

1 -3
OstPuydvr * 7 Zarsotua\*waxyastaurawxaw} +0(n "),

vhere £ denotes the summation over all suffixes r,8,..., each of vhich ranges

from 1 to p. Further, we represent h(§2) as

(7




- Foes o ites (8)
h(S)) = 8+ by (5)) + h,(5,) ,
where hs (Sz) is of order n~°. Then Eq (8) may be substituted into

Pr{m Tr S)A< 2h(A-1)], and by Taylor's expansion we have

Pr{m Tr SA < 2h(a'l)}

= exp[{hl(ﬁ-l) + hz(‘A:l)+....}D] Pr{m Tr S,A < 26)

=

-1 -1 1 -1
=[1+ fhl(i ) 4+ hz(ﬁ )+....}JD+ z{hl(i ) +

h(A ] o%.....1. P:-{:-n-‘s':'1 < 20}, 9

where D -g—e--

(10)

Hence we get

: 1 2 L1
6® =[1+5% 03 3 +1 by e waelunler *

1
2 E orsotuowcxya taur wg } +0(n” )J[l + h (A )D +

[hz(fl)n + %h:(A‘:l)D }+ 0] PrfaTe 5,A < 26).

Now,equating terms of successive order [ 1], we have
l 5
(h, (A ho+dg o“am L m_} Pr {m Tr $)A < 20} = 0, (11)
(h, Yo + %hf(A-l)Dz

+ .ll: T craotu [hl (.t.ut) (i'l)n + 2h{.t) (t'l) autn

-1
A a —
¥ h1 (... ) D] + 3n2 Z orootucwaotauvawr

+l—zza 0.0 o 3 d 1 »r{-rrg1 < 20} = 0,

n r-tuwxysturvxyv

(12)
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and so on, where h{"’) @l - 2,h, ™) ana h"‘ ur) 'y . al.

ratl

|
|
:
|

Hence to evaluate hl(A-l) and hz(A ) we have to find

3" - Pr{m Tr S ~1A < 20}, 5”3‘”3 Pr{m Tx SA< 20},...: Por this purpose we

use perturbation technique [ 8]. Let

-1

JepPr{mTrs !+ ¢) ~ < 26},

o R

vhere ¢(pxp) is a symmetric matrix sufficiently close to O(pxp). By Taylor's

theorem we get

1 1
J={1+2 ‘rlatl i 2! E crs‘t:uar»at:u 3! z et: ct:uewarsatua\m &

1

aT e 33863+ eeo.) Pr{m Tr

A < 20}, (13)
rs tu W!y ~

Also by definition we get

|Jn/2

J=
(2m) (np)lz

[ xpl5 Tr B Y ¥°] av,

~

where m S, = YY', Y(pxm) and R:{¥:m Tr ;7% &1 < 26}, Now et I'tpxp)

be a nonsingular matrix such that

N =

r’ n = I(wxp) - EJ'I
and

1
2

&

Py :')'1 I = I(pxp),

~

for e(pxp) sufficiently clese to g(m) and D-n = diag (Tll, 44 .,'np) . This

is possible as B and A-l are p.d.

Let

Y(pxm) = I'(pxp) Z(pxm).

B R L L =TT i




|1-D B -(m|2)
J = L‘B" Gp(e).

vhere p = wp/2 and E 1is an operator such that E GP(G) =G ..(6). Now let

p+l
E=sQAdA+1.

Then

2 -BEVIL -2 - 12 - 2, - palilz - n,)
« 1 -7l s c_)'1 - 1)4]

- |1 - x4}, (say).
Hence

31 - 8= 6, (®

= expl (-n|2) 10g|1 - x4|] G,(®).

lA = I + F such tlutlch (F)| <l, 1is=1,...,p, then for ¢(pxp)

~

Now, 1fB

sufficiently close to O(pxp) we get |ch (X)l <l,1is=1,...,p, and

J-m{f TriA'*‘Z‘thizAz""ETl'iaAa"'§h56A4+ ..... } Gp(e)

2
-[1+-§‘rrxA+[frrx2+-;'—(rrx)2] a2

2 3
+ {5 X + 3 @ X) (Te xz) + 55 (e x)°} a3
2 2
+{§r:x" ('l‘rX)(TrX) + 3 (1r xz)
p 32
3 4

+35 (T x) (Trx ) + 35 (Tr X “1a%..... 16,0, (14)

Now, using Taylor's cxpansion for A-l + ¢, we can represent X by
x=8lals gl

-1,.-1 21,-1
=3 "%l A -1 6




=1 -1 -1
T T Uy B D M

+

+Z

Te

¢ (A A)(A A)(A A)

T8 tu W X8 .

ze¢

€. ¢ (A A)(A A)(A A(A A)

rltuwxy,.r~.¢tu~~w~axy~

eeo)

A -

1

(B A-I) -Ee (B A)(A A)

~ N~

-

(3" A)(A A)(A A)

ratu...m 8 ~ LU o

Ec

-1 .\ a-1
(B~ A)(A ﬁ)(ﬁcu .t)(fwu ﬁ)

-1
Xl VRO V) (A A Lo (Aw A) (ﬁ'xy A)

r’tuwxy'y ~ ~8

vhere A-l

(1,3)-th element as 1 (6 8,9 * 8 ,8_.). Now,using the notations

Tr(A A) - (rl).
~rs
rr(_g}: D@ A) - (tsltu),
Te(A_ MDA A) @, A) - (rcltulw) y
~t
Tr(A 9(5 i"iw ﬁm A) = (rs|tulw|xy),
T ? :) (fx t) - (Flultu).
Te(B" A) (A, A)(A WA= @+ Plos]ew,
Tr(8” A)(A A)(A A)(ﬁ; A = (1 + Fles|eu]w),
Tr P - (l-')

is pxp matrix obtained by operating 3“

=1

3 si'r)

Tr l?2 - (FIF)... or alternatively,

'l‘tF

= (Es) ...etc

on A”

(15)

1; {i.e., it has {its

M e s

PP
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and substituting Eq (15) into Eq (14), we get from term by term

comparison between two expansions of J, Eqs (13) and (14) after substitution,

the following:
3, Prim Tr S)A < 20) = ~{() (1+F|ra)8 + [ (B| X |re)
2
+ EO® (1+F|rs) 182 4 [(g) (f.lfj £+£|u)
+ @ (@D @) + @) @|147|re)} + Bea(r)? (148 rs) 0
2
+ [ (F|p|E|1+P|re) + G2 ((6) (B) (F|P|14F]rs)

+ (2) (Z|F|P) (14F|28) + (3) (F| ) (Pl 1+Pea))

3 4
+ A {2E|Lr|e) + EDE @m) + G @ @] 16°

*Sese e
+oeee-} G, (®,

Simil
arly expressions for arsatu Pr(m Ir S ﬁ < 20), 3"3tuaw Pr(m Tr m < 26)
and aroatuawaxy Pr(m Tr § :5 20) are available in [9].

3. AN ASYMPTOTIC EXPANSION FOR PERCENTILES

OF Tem Tr 5,5, P T0 0(n™}).
Now recall that 4G, (6) = -Eg,(6), where g (8) = [r(e)]™) ™® ¢°~
and p = mp/2.

]
Also we note here that

i

1 8
¥ 'p(e) " p(pFD) -+ (pre-1) 'p(e)'

(16)

Thus, it is possible to write 3 2  Pr{m Tr §)A <26] in the following form:

4
ot2ur Prlm Tr SA < 20] - - Z A el 8,®,

17)
Jal J

ot S




REETy 1 i e T — e

{ ' vhere A;'l, J =1,...,49are also available in [9]. Also, we note

1
%%ty (stlur) 5% p(p + 1),

; T % e%tu (st)(ur) = p, T c‘t(at) = p,

r,s,t,u s, t
U= T o tu (F|st) (ur) = (P),
4 r,s,t,u e E ~ L
4 (18)
] szt uomcr':u (:Istlur) - (E) (p+1) /2, (
% LA I

) 1
Ve o o (Flstlur) 2(F2) (p+1),
r.s,t,u

1 2
W= T % ety (Elrs |£|tu) - ;((E) + .(52)).---
r.a’t’u

yeeo@te.
As a check for the above relationships, 1let P(pxp) = I(pxp). Thus U should
be equal to p,which is the value of ¥ c"otu(lt) (ur). Similarly V and W

should equal % P(p+1),vhich is the value of T % ety (stlur). With
the aid of these results we can evaluate Aj"l, J=1,...,4, after sumning
over all subscripts s, t, u, r.

Now by using Eqs (l11), (16), (17) and (18), and putting 26=y we get

4
-1 = 1 j » =1
nah -y E Ao e, 19)
vhere

A, T o o & / (mp) (mp+2) .. .. (mp+23-2), J=1,...,4, and A, coefficients
T, t,u rs tu J 3

have been evaluated and are available in [ 9].




Then we get from Eq (8) the following:
-1 -1 -2
T-nTriliz -y+2h1(£ ) +0(n )

4 y
5 Sk ﬁ[jzl AJ,JJ 8, @06 ®1 4 0. (20)

Hence we have the following theorem:

Jheorem 1 Let m S 5 and n .2 be independently distributed H(-,p,B ),

lA - I4+F .

~F ny

Then an asymptotic expansion for the percentile of T=mTrs 5 Jlil given by

H(n,p,A ) respectively, and let IChi (l')l <1l,i=1,...,pvhere B

Eq (20).The following are special cases of Eq 20.

Cage 1. When terms involving f“ kl are negligible, where ftj is the

(i,j) element of F, terms like (F) » (F2), (P)(FZ) .etc. drop out.
Consequently A,. will disappear and Al’ Az and A3 vill be reduced to the
following,

T UDED - a2 e 1+ G,

" (B ((H) + (1 - 25)/p) = mz(P))/(IIN-Z) and

(21)
- (1/4)((2)(1') {e+l) /p + wl(?)tpﬂ)/z + 2(!')/9)
+ (Il /2) (F))/(IWZ)(W)
and from Eq (19) we get
3
-1 1 RO O (22)
hl(ﬁ ) = ;[jfl Ajy ]gp( )c’o))

wvhich agrees with C-P[1 ] to the indicated order after simplification.

10




3
g

Cagse 2. As defined earlier,

P 2
y= T ).ij(ll)
=1

oy e

A= T

vhere X}(m)'c are independent central chi-square variables with m d.f. and
lj'n are ch. roots of Ea z 2.1. Another check can be made by putting
F(pxp) = O(pxp). Then
y = xz(np)
3 is a central chi-square variable with mp d.f. and G(6) = Gp(e) . Hence we get

' Te X2+ = (o)) /mp2))X* + (p-m1)X?] + 0(n™2)

vhere xz - xz(up). This agrees with Ito's result [ 5] to the indicated order.

4. AN ASYMPTOTIC EXPANSION FOR THE C.D.F.
2 OFT =mTr 51551 uP T0 o(n” 1)

3 In this section we will derive an asymptotic expansion for the c.d.f.

f of T to O(n'l), following the method described earlier. Again we write

-1 -1
Pr(m 7r 5,5, '< 20} = J.n Pein T 5,5," < 20]s,}Pr(ds, )
-1

; = 0 Pr{m Tr f.lfz < 20}.
: From Eq (7) we get
*
! -1 - 1 d -2
Pr{m Tr ‘8.122 <20} = G(0) + i b LA .taurc(e) + 0(n )

: - 60 - n @hHle'® + o, (23)

i Let F(20) be the c.d.f. of T; {i.e.,

F(26) = Pr{(m Tr 5.5,

Upon substituting Eq (19) in Eq (23) and replacing y by 20 we get

1520].

4
F(20) = G(O) - rl‘[ T A

I @] @ + 0m. (24)

Hence we have the following theorem:

11




Theorem 2, \Under the assumption (1) of Theoree 1, the asymptotic expansion

for ¢ d.f. of T is given by Eq (24).

Special cases:
1. Upon neglecting all terms involving fijfkl’ wvhere fij is the (1]) element

of F, we get from Eq (24)

3
rao) - 6@ - £ ae0l]g @ +owd,
=1

where AJ". § = 1,2,3 are the sawe as in Eq (21), and this agrees with

c-P[ 1] to the indicated order after some simplifications.
2. Again we put F(pxp) = 2(pxp), ard we get
F@20) = G (6) - 3=[(pwt1)0 + 2((prme)/(wpt2)) 6] 8,(® + 0D,

and this agrees with Ito's result [5] to the indicated order.

S. AN ASYMPTOTIC EXPANSION FOR PERCENTILES

OF T =mTr 51551 0 0(n"?)

Here, using the technique stated earlier, we obtain the terms of order n'z.

The results of the third and fourth derivatives of G(6) as it stands are not
convenient for practical use. In order to make some simplifications we assume
that terms involving fijfkl are negligable, where fij is the (i,j) element of
the deviation matrix F. From the third and fourth derivatives given in [9]
and from Eq (12), using a technique similar to that of [5], we get after
tedious simplifications

4 5
-1 l . P =1 A o
@D ===z eyl g @@ - = ¢,re @6" @17, (25)

48n°  jai 8n° =

wvhere

S 23 ) {1

By * b, + 24(C, /) - s4c, 12y, ye1,...,4 (26)

The coefficients CJ.(I) and Cj(z) are given in Eq (32), but the bJ!'s and Cj's

are listed below.

12
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- 7p2 + (~12m#+12)p + 0-2-12»1).

+

+

(13p%+26p-110247) / (mp+2),

(4mp>+2 (3m2+3m+10) p242 (2m3+3n2+17 m

18)p + 4 (5m2+9m+2)) / (mp+2) 2 (mpth),

by = 6(p=1) (pH2) (m=1) (ms2) / (mp+2) 2 (p+4) (mp+6),

(p((rm)((n’/s)p(pu) - @/8)p) + (~(m/4)p.
(pr1) + (m2/4)p) (- (@/2) (p¥1) + (m2/2))),

(F) ((p-m+1) (- (@/8) (p+1) + (@/2)/p + (3u/8))
(pra+l) ((m2/8)p(p+l) - (a3/8)p) + (-(m/%)p.

(p+1) + (a2/4)p) (- (2m) /p-uD) / (p+2) - (w/2) (- (u/2)
(p+1) + (@2/2))),

() ((p=mt1) (~(p+1) /2p - (a/8) (p+1)-n/p-(3u’/8)) /
(up+2) + (prm+1) (- (w/8) (p+1) + (w/2)/p + (3m/8))/
(mp+2) + (p-mtl) (-(n/8) (p+1) + (m/2)/p + (3u2/8)
(-n/2) (-(2m) /p - (aD))/(mp+2) + (~(m/2) (p+1)
(®2/2)) ((p+1) /& + (n/4)p)/ (mp+2)),

(i)((p--+1)((p+l)lzp + (m/8) (p+1) + (m/2)/p
(@/8))/ (mp+2) (mpHs) + (pat1) (- (p+1) /2p

(®/8) (p+1) - (a/p) - (3a°/8))/(ap+2)? +(-m/2)
@@+ /p + m((pH1) /2 + (2/ p))4m2) / (mp+2) (mp+d)
((p+1) /6 + (@/8)p) (- (2m/p - mD))/ (apt2)2)
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Cg « (F) ((pra1) ((p+1)/2p + (w/8) (p+1) + (u/2)/p
+ @/8))/ (mp+2) 2 (wpHs) + ((pH1) /6 + (m/)p)
2(p+1)/p + m((p+1) /2 + 2/(p) + (@2/2))/ (mp+2) % (mp+a).

Now we substitute Eqs (21) and (25) into Eq (8) to get

-1 -1 -1 -3
T-mTrS]Sz-y+2h1(ﬁ )+2h2(£ )+ 0(n ")

3 4
-y + 2 ) A.yj g (0)[c’(8) 3-1 + _L? z Bj'yj.
L 5 R 24n°  3=1

5
g, ({6’ (8) T e ik g y3 g, (O’ (9) 140wy

(28)
4n- §=1

where Aj's are given by Eq (20). The Bj's and Cj 's are given above, and we

get as a final result the fo)lowing :

Theorem 3. Let mf‘l and nfz be independently distributed W(m,p,B.l) and
W(n,p,A'l), respectively, and let
(1) B7IA = 14F and Jona(m)| <1, 1 - 1,...,p, and

(11) terms involving fi_)fkl be negligable, where fu 1s the (1,))

element of ¥. Then the asymrtotic expansion for the percentile of

-1
TamTr ‘SJ‘SJ is given by Eq (28).

L b

6. AN ASYMPTOTIC EXPANSION FOR THE C.D.F.

OFT =m Tr 51351 TO ORDER n~2

Here we will derive an asymptotic expansion for the c.d.f. of T

iPer- W g

PR R

following the methods described in the previous pages. Again we write

-1
S,” <20} = [ Prim Tr S

1
Prim Tr S 15, < 28} Pr{ds,}

1

=@ PrimTrs A < 20},

1

14




From Eq (7) we have

1

-1-800
n rs tu st ur

Pr{m Tc < 20} = G(0) + 3 d

X

4
G(®) + 3u2 z araotuowa.t uva'r G(o) +

L

5 £6, 0 0.0 3 3 3 3 G(6) + 0(n"J).
2n

T8 tu W xy st ur wx yv (29)

Let F(20) be the c.d.f. of T, {.e.,
-1
F(20) = Pr{m Tr 8,8, < 20}.

Upon substituting EqQ (19) and results from [ 9] we get after tedious

simplifications the following:

4 .
F28) = 6(9) - i ¢ A, 2071 g () -
=1

4
—Lrz 5 (9 e -3
“nz [j-l I 8)7] sp( ) 4 0(n ) (30)
and

PN ¢ §) (2)
By = b, - 64C, *zfcj p (31)

vhere the coefficients A

j‘s, are available in [ 9] and the rest of the
coefficients are listed below:




(2)
G,

~Gup’ - 2(3m2-3m+4)p? + 3a2-2045m-4)p - Sui+12m04)

“2(3up 42 (3n2+3u4) p2 -3(3n°20-5wi)p - BuZ+12m+4) / (mpt2) 5

4(mp° - 2(Im2-3m-4)p? - 30m*+ 20>+ 11m-4)p - 40m2 - 36m - 4)/

2 (mp 42 (w2 +mt4) p2 + (02+202421m+20)p + (B02+20m+20)) /

(mp+2) \mp+<) (mp+6) ,
= (EX(=(n/16) (p2+3pa) + (3n2/8) (ph1) - w/8),

= (F)((-3/2) (p™+3p#a) /p = (3m/2) (1)

- Gn2/6) (pr1) + (3n/2)/p + Gu/4)) / (mpt2) ,

= =(P)((6m) (p+1)/p + (30°/2) (p+1) + (6ud)/p
+ (30°/2))/ (mp+2) (mpd) ,

~ (F)((6) (p243p+4) /p + (w/2) (p243pts)
+ (180) (p+1) /p + (302) (p+1) + (6m2)/p
+ (1)) / (ap+2) (mp+h) (mps6) .

- -(F) 2(2p%45p+5) /o + (w/2) (2p%45p43)
B (1) /p + (@) (52422 45pr2) 4 (md)
(p24pti) fp + (3/4) (plapsd) + /2)),

(B ((16) (2p%+5p4) /p + (2a) (2p245p45)

+ (60m) (p+1) /p + <Bm (p'+2p243pa2) /p

+ (60) (p+1) + () (p747p243pr2) + (9md)
(2041 /p + (/2) (pPapr) + (3))/ (api2) ,

= =(F) ((48) (2p245p+5) /p + (8m) (2p+5p+5)

+ (1;2-) (ptl)/p +(28m) (ps+292+3p+2)lp

+ 2602) (1) + (4nd) (pO42p+3p+2) + (24md)
(pH4pH) fp + (3m) (p24pHs) + (6m))/ (mpt2) (mptd)

16
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and
(2)
Ca

(F) ((54) (2p°+5p+5)/p + (8m) (2p%45p+5)

(208m) (p+1)/p + (32m) (p +2p%+3p+2)/p

+

(24n%) (p+1) + (4n?) (p+2p%+3p+2) + (20m)

+

(p2+p+4)/p + (2m°) (pPep+d) + (4n))/ (mp+2)
(mp+4) (mp+6) .
Then, we have the following final form:
E ; Theorem 4. Under the same assumptions of Theorem 1, the asymptotic expansion

for the c.d.f. of T  to O(n~2) is given by Eqs (30), (31) and (32).

f 7. NUMERICAL STUDY OF POWERS AND ACCURACY COMPARISONS

To show how the accuracy has improved by introducing the terms involving

fijfkl,where fij is the (i,j) element of the deviation matrix F as well as

terms of order n'z, some numerical results are presented in this section.

T B N DA WA G

Some comparisons may be made from Table I between the exact and approximate

pRs—

powers of T when p=3 and m=4 for n=34 and n=84. Values of the exact powers

in the table are taken from Pillai and Sudjana [4]. Our expansion,which is

S LT

given above by Eqs (30), (31) and (32),is used for the computation of
this table up to O(n'l) and O(n'z). To illustrate the usefulness of the
neglected terms in the C-P approximation [1] values using their approximation
are given in ( ) in the table. It may be observed that their values differ
considerably from the exact while our improvement leaves practically very
little error. One can see from Table I that the approximation given by
Chattopadhyay-Pillai to order 1/n is not very good even after adding

terms of order 1/n2. Again from Table I it is obvious that the accuracy

given by terms of order n'l is not enough even after including those

fijfkl terms,and the usefulness of terms of order n'2 is also considerable.
Further power computations have been carried out for p=3 and p=4 and
presented in [9]. For tabulations of powers, the upper five percent

points were taken from Davis [10].
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TABLE 1

THE COMPARISON BETWEEN THE EXACT AND APPROXIMATE POWERS OT T-TEST
FOR p=3, m=4, a=0.05 AND FOR EQUAL DEVIATION PARAMETERS.

Up to the
@ order n=34 n -84
0.001 0(1) 0.013 0.031
ota™l) 0.036 0.048
0(n"?) 0.049 0.0501
Exact 0.050 0.0501
0.150 0(1) 0.019 0.043
otn”h 0.049 (0.052)  0.063 (0.065)
0(n"2) 0.064 0.065
Exact 0.064 0.066
0.500 0(1) 0.040 0.079
oY 0.091 (0.097)  0.108 (0.115)
0(n"2) 0.107 0.109
Exact 0.102 0.109
1.000 0(1) 0.087 0.150
oY) 0.179 (0.178)  0.188 (0.206)
0o(n"2) 0.202 0.189
Exact 0.173 0.189

The figures in ( ) are computed

18
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SECTION II
ASYMPTOTIC FORMULAE FOR THE

PERCENTILE AND C.D.F. OF HOTELLING'S
TRACE UNDER VIOIATIONS

1. INTRODUCTION

In the previous section, asymptotic expansions for the distribution
and percentile of the statistic T = m Tr §1§'1 have been obtained up to
terms of the order l/nz, where m§ and n§2 are independently distributed
central Wishart with m degrees of freedom and covariance matrix
§I,W(m,p,§1), and with n degrees of freedom and covariance matrix §2,
W(n,p,gz), respectively., Further, denoting the non-centrality by

Il = B and 251 = A, we also included

(F) = TtF = Tr(8™!A-1), where &
terms involving fijfkl’ where fij is the (i,j)-th element of f, which
were previously neglected by Chattopadhyay and Pillai [1]. In this

section again we extend the work of Chattopadhyay [11], who derived an

asymptotic expansion up to terms of order 1/n, neglecting fijfk terms

1
for c.d.f. and percentile of the trace statistic when mS1 has non-central

Wishart distribution with m degrees of freedom, covariance matrix Zl and

non-centrality parameter 2, W(m,p,zl,n) and nS2 distributed central Wishart

terms

W(n,p,zz). The extension in this case is to include the fijfkl

neglected by him. It may be noted that these terms were found to improve the

expansion in the previous section. The results are helpful for the study

19
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of the violation of a) the assumption of a common covariance matrix in
the MANOVA test based on the trace statistic and b) the normality assump-
tion in testing I

1 ® Z,. For §1 = L, asymptotic expansions of the

2
non-central c.d.f. have been studied by several authors [12] and [13].

2. THE METHOD OF ASYMPTOTIC EXPANSION

The notations in this section generally follow those of the previous
Section and other papers referred to earlier [ 1], [ 5], but additional
notations will oe introduced here. The method herein is also to obtain
an asymptotic expansion for the percentile of T first, and use it to
derive an expansion for the c.d.f. of T, where T may be defined as
follows:

Let Z = (z,,. ++»%,) be a pxm matrix of independently distributed
columns vectors,where 2 has th: density N(gi,gi), i=1,...,m. Then
we may define T = Tr §;1§§ = iﬂ)-:l §i§;1§i where nS, is distributed
H(n,p.;z) independently of Z.

Now, if §;1 is replaced by g in T, then Tr BZZ' is distributed as a
non-central chi-square with mp degrees of freedom and non-centrality

parameter 2, where

ol = Tr B’ = Tr 0

-

Me {Elo---ay.} #0, p =mp/2

we may note that

Pr{Tr B2Z' < 0}

-2/2 v («»2/2)J !° Pl x/2,,

=
J=0 J12°9 r(ow) 0

20
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2
an(e.ﬂ )»

where c_p(e,uz) is the c.d.f. of non-central chi-square with mp

degrees of freedom and the non-centrality parameter mz.

Let

G(8) = Pr{Tr AZZ' < o).

| 1

As a first approximation, for large n we may replace 5' by S, in G(e),

2
and consider

PIPRT TR

1

G(e) = PriTr §, 22' < 6}.

Furthermore, as suggested by Ito [ 5], obtain a function h(§2) of the

elements of §2 and n large enough such that

-1

G(6) = Pr{Tr §,

22' < h(S,)} (33)

and then write h($,) as a series with the first term being a linear 1

function of non-central chi-square variables and terms of decreasing

order of magnitude,

Now Eq (33) can be written such that

1

G(6) = Bg {PriTr 5, 22' < h(Sp)/S,]}. (34) ,
i
By using Taylor's expansion it is possible to expand Pr[Tr §51 EE' < ;
h(§2)|§2] about an origin (°11""’°pp’°12""’°p-l,p)’ where |
ATl e (o) 4 () = () (35)
Thus,

21
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Pr{Tr 5;' 22' < h(S5,)|S,)
= texplTr(5,-A"1)a)PriTr a22' < hA™H)), (36)
where
3(pxp) = (3146, ) 733’ 37
and cij is the Kronecker delta. Hence
G(6) = ® - Pr(Tr AZz' < h(A™))) (38)

where

0 = expl-Tr A72) |1 - 247"V

-~ ~

1 -2
Oy zorsatuastaur + 0 ") (39)

where I denotes the summation over all suffixesr,s,..., each of which
range from 1 to p. Expanding h(§2) around 6 gives

h(S;) = 6 + h,(S;) + hy(S,)+... (40)

where h_(S,) is 0(n"%). Prom Eqs (38) and (39) and expanding
h(§2) around h(g'l) we can get

Ge) = [1+ 2 Jo_ 0,00, + 00 DI[ 1+ hAHD + 0(n7Y)

Pr{Tr AZZ' < 0},
where D = %. and by equating terms of successive order we get

[hl(é-l)b - %Zarsotuastaurlpr{'rr AZZ' < 8} = 0. (41)

For the purpose of evaluating 3 stur Pr{Tr AZZ' < 6} we will use the

perturbation technique [ 8j.

22




-1

J=pe(re(A? + )71 220 < 0) (42

. )

where €(pxp) is a symmetric matrix sufficiently close to 0(pxp).
Following [11], [ S] and [13], we get

3= 1 - 5" ™ pepr-u?/2)
Expl (1/2)E Tr(] - X8)7'8)6,(6,0) (43)

= - r 2 = 2
where A = E-1, E c-p(o,u ) szr(e.u ) and

-1 -1

aleot -1

X =3

« 74D - [e BT A

-1 -1
+ Je 6 (BTN

-1
-rsﬁ) (étué)’ T

-1
where Qrs is the pxp matrix with (i,j)-th element (1/2) (Grissj + Grjcsi)‘

Also by Taylor's theorem J can be expressed in the following form

1
J={1+ {c"a” * 3T xcrs‘tuarsatu""}

Pr{Tr AZZ' < ¥} (44)

Now ,if g'lg-; = F such that Ichi(lj)l <1, i=1,...,p, upon using the
notations
-1
Tr(A,  N) = (rs)
-1 -1
Tr(A, N (A, A) = (rs|tu)

Tr(F) (AT2 A)(Agg A) = (Flrs|tu)
QTN NETN A A = (s | 1E| )

Te(F) = (FD), Te(F*) = (F).... etc.

23
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and substituting X in Eq (43) term by term comparison between the
two expansions of J, Eqs (44) and (43), after substituting )5 will give
the second derivative 3 .0 Pr{AZZ' < 6},which can be written in the
following form:

6 EJ 2
9ged,y Pri{AZZ' < 0} = z-Jgo AJE'G(8,u") (45)

vhere
A‘; = (;.){-z(yl_'lrsltu) + (!Oglrslzﬂ."tu)

+ 2(F|1+F|rs|tu) - 2(F|1+F|rs|I+F|tu)

2
- 2(F|F|1+F|rsftu)) + (FI{(I+F|rs) (1+F|tu)

+ 2(F) (I+F|rs|tu) - (F) (I+F|rs|I+F|tu) - 2(F) (F|1+F|rs|tu)
- 2(1+F|ra) (F|1E| o) - (B%) (FoE|vs|ew))

> 2
- @D {(F)(1+F|rs) (IsF|tu) + (P)*(L+F|rs|tw))} .

Other A;'s coefficients are available in [14], (15].

3. AN ASYMPTOTIC EXPANSION FOR THE
1

PERCENTILE OF T = Tr §,° 22°
Recalling that G.p(e.uz) is the c.d.f. of the non-central chi-square
distribution with mp degrees of freedom and non-centrality parameter

uz.we may note that

2 2
BTGy (8:07) = Gppynr(8,07).

G
mp+
Hence, it is possible to rewrite Eq (45)in the following form,

6
3,9, Pr{AZZ' <0} =2 ] A

5 2
st’ur 350 JGI]H'ZJ (8,07 - (46)
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Again, we note

mgm st%ur(Fsltu) = 3 p(pe1),

lo,g(rs) = p, Jo_,0 (rs)(tu) = p,

v = Jogo,(Flrs) (tw) = (),

g v = Jo 0 (F|F|rs|tu) = ,-(r ) (p+1),

? W Iastour(t_llrslljltu) - %-[(9)(13) + (8R)],...etc.
|

As a check for the above relationships, let F(pxp) = I(pxp) and
| 8(pxp) = I(pxp); thus u should equal to p,which is the value of
Xost ur(rs) (tu). Similarly v and w will be reduced to ):o st% l,(rsltu)
equal to 1/2p(p»1): With the help of the above relationships, it is possible

i to evaluate the Aj's, J=0,...,6, after summing over all subscripts,
|

r, s, t, u,

Now by using Eq (41) and the above coefficients we get

-h (A )D Pr{Tr AZZ' < 0}

z 'T(.JP)G n(eoﬂ ) q

1 6
+ ; Jz (.DP)G 21(030 )n
where

R ST T Y s

o ™ ®p(m-p-1)

|

ll = -2‘(‘?-02)0

T

2 lp(mpol)-Z(Zmpol)uz + tr 92

o

2{ (m-p+l)w2 - tr 92}.

a‘ = tr 92,

25
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and A, = ] o o, A] J=0,...,6¢
r,8,t,u rs tulJ

The above can be simplified after tedious algebra,and it can be

written in the following simple expression,

3
k
i go ®ihsk J=0,1,...,6. (47)
Some of the AJk's are listed below and the rest are listed in [14]:
oo = 0

Aoy = - /O RIEB>E @)+ (B (FDye2(FD) +27))),

Mgz = /B EP-20-3 1) - @1
- [ () (Fre6(F)ea (FH]),

ios * -/ LEp ()] (pe1)+ (MIPs2( 20 (1) (F)],
Ap = (-3 IE)+(D)] - S0 + @D,
Ay = ([24ED18(F)+ @) (F) + [(5/2)p+3(FD)+3(FD)]. (gF) i
s [-(3/2)p + 3(OI*S(FD))(QFD) + [3ps3(F)](aFD)) (ps1)
+ 1(9/2) (F2) 2+ (45/2) (1) (FH) 19 (F) (F) 1 (@) + [(3/2) ()?
+ (9/2) (F2)+3(F) (F) +4 (F%) ] (aF) + [6+21 (F)+ (3/2) (P)?
+ (9/2) (F%)] (aF%)+ [18(F) +54] (aF>) +36 (@F ) +12(F) 2

+ 1201 n8(R) (F)18(F%)/12), %

Ay = {I-(Mpe3(Fpe8 (B 249.(F) (FD)+ [(F) (FD)- (FD)
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+ (DA @/2+[-(Ops2(D 23() (F)+ (1)1 (8F)/2
s[(Op+ (21 @FD)). (pr1)+[-2(R)+(FD)-(1/2).
() (F)+ (F)2(F2) (24 (O ) (@) ¢ [-pr2(P)
+ (9/2) (F+2(O % (B (P 02(F*)+ (F)3/2] ap)
+ [pe12(F)+(3/2) (A 2e2(FD)) (aF%)s6 (a°) (F)
+ 4(F)+20(FH12(F))/(8),
Ay; = (9B p P (O /2 @ (O M2 B3], Ban/2)]. (o)

+ 32 /2 (MY @+ [3(Rp+12(R) 243 (F) (FD)

+ /2) ()1 (@R +3@F%) () 218 (Mpe36(F)?
« 18(FH (D)) (48),

Ao = (-@F%) (pe1) s [4(B)s42(F2)+36 (F)] ()

+ [4-3(8) (F)-3() (F2)] (aP)+[38- (8) (F)] (9F2)
3 aF) 2528 (AF%) -4 (aF*) + (PR ) (0"
- 3(GE)“+28(9F)-4(aF")+ (FR')+ (2" F)
2 2
+ @'F2)-4aR) @F)1/ (4),
2y aarpd 2 3 E
Ay = {[-8(F)-40(F)-24(F)+ (@) [4(F)-2(F2)- (16/3) ()] i

+ [-2p-20(F%)-16(F)] (aF) + [4p-20(F) -16(F2) ] (aF>)- (16)

[p+ (F)] (GF°)+[-p/2+ (F)+ (FD)] (aF) %+ [2p+2(F)] (aP) (aF?)

e
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(®) (38) (F)] (po1)- [8(F) 20134 (F) (F) +18%P) (BY) +20 B2 @)

+

3347016 (1) (D)) (6P)

[8(F)-16+10(F) %+36 (F

[64+98 (F)+32(F)+8(F) 2] (aF%) - [312+96 (F)] (9F")

192(aF*) + [4+6(F)+ (3/2) (F1)+ (1/2) (1)) ()2

[-4+6(F) 27 (F) (F))] (@) (@F)-20(F) 2-20 (F%)-24 (F) (F?)

+

24(AF ) -24(F%)+ [-2(F)+ (F)?) (aF")+ [6 (F)

+

+

(F2)) (@'FR)+ [14(F)+ (F)] (2'F20) + [28+6 (F)] (9F) . (9F%)

+ 12(8F) (9F°)+[-2(F)+ (F7)] (3'9)+8 (F) (9'F°)
+ 4@ @)+ 8’y 16),
2 2 2 2
Ayy = L[-4(B)p-40(F)2-36(F) (F))-12(F*)p- (8 (F) (FD)

2(0)%) (@) +[4 (F)p-20(F) - 24 (F) (F%) -8 (F))p] (oF)

+

16[ (F)p+ (F) %) (%) + [ (BYp+ (7) 2] (OF) 2 () (89F) (F)?).. (p+1)

+

[24(F)-16(F))-15(F)*-32(F%) () 2] (@) + [12p-8(P) - 32(F°)

24 (F)-84 (F%)-26(F)2-16 (F) (F%) ] (GF) - [16p+200(F)

+ 32(F%)+24(1)%) (@F%)+ [p+10(F)+ (FD) + (1) %) (aP)
- 32(P)-88(F%)-12(1)°-12(F) (F%) -48 (F*)-32(F) (F")

- 64(F) (aF)+ (2'9) ()% (aPa") (F) %+ (aFa) (F) 2

e e ¢ Pk el Dt MR ae. bl
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+ (2'F%0) (F) 2+4(QF) (F) +4 (OF) (9F) (F))/ (32),

Ayg = -LI1(3/2) (B p+ (3/2) ()1 P+ (1/2) @) (F)°) . (po1)
¢ [3R)p+12(R)2+3(FA) (F)+(1/2) (1) 3) (GF) + [3 (F) 2+ (1/2)
(H* @+3(M%(ar%)1/(12), and the rest available in [76].

1 As an immediate result h(§2) can be expressed in the following manner

4
h(s,) = o-[f il 8 0,P)G, 55 (0,6%)

6
> %J)Zo I O (O R TU P (48)

Recall that ¢ is the appropriate percentile of the linear function of

a non-central chi-square variable of the form Y = E iji(l,mz). the
=]

1

xj's are the characteristic roots of ég' and G(8) is the c.d.f. of

Y in terms of the percentile. Finally, we can state the following

theorenm:

3 Theorem 5. Let Z- (51,...,5.) be a pxm random matrix of independently
distributed column vectors,where z; has the density NQy;» Zl-g'l), and

n$, distributed central Wishart '(“'P'Zz . Q'l). Under the assumption s

1

that B"'A = I+F and |(2hi (M| <1,i=1,...,p, an asymptotic :

expansion for the percentile of T is given by Eq (48).

The following are special cases of Eq (48).

Case 1. When terms involving fijfkl are negligible, where fij is the
(1,J) element of F, teras like ()2, (F%) and (@) (F’) can be dropped.

g
z
H
H
¢
!
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T

Consequently ’A6 disappears and Ao, Al up to As are reduced drastically
and, finally, Eq (48) agrees with the result of Chattopadhyay [11] to the
indicated order.

Case 2. Under the equality of the two covariance matrices, the deviation

matrix is zero. Putting (F) = 0 in Eq. (48), we get Eq (6.4) of
Siotani [13].

4. AN ASYMPTOTIC EXPANSION FOR

THE C.D.F. OF T = Tr s;l 22!

In the following an asymptotic expansion for the c.d.f. of T to
O(n'l) is derived by using the method described earlier. Also,

it is possible to write

PriTr 53122 < ) = [ PriTr ;%22 < 0]s,}Prids.)
SPatls 0 3, &' L 0]§,)Prids,

- © Pr{Tr AZ2' < 0}
where @ is given by Eq (39). It follows that
PriTr §;'22' < 0) = 6(8) - 1 A Hle (o) + 0D

Under the assumptions of Theorex 5 , we get

4
1 1 2
zi' Jzo ‘j (-»p)cup‘,zj (eom )

b Ay 0,u}) + 0™, (49)

where the aj's and AJ's are presented earlier and G(8) and G (e,mz)

are defined earlier. Then it follows:
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Theorem 6. Under the asswpti.is of the previous theorem, an asymptotic
expansion for the c.d.f. of T is given by Eq (49).

Similarly we can get the two special cases, as we pointed out in

the previous pages.

5. NUMERICAL RESULTS

The expansion given by Eq (49) has been used here to compute
the powers of the test when the departure from the null hypothesis
occurs, The following table shows these powers. For this tabulation,

the upper five percent points were taken from Pillai and Jayachandran

[16].




il o T

V.

TABLE 11

POWERS OF T TEST UNDER VIOLATIONS FOR p=2, m=3, a=0.05
WHEN THE DEVIATION MATRIX HAS EQUAL DEVIATION PARAMETERS

apl o ® e miches
.00001  0(1) .0379288
o™y .049277 (.049273)
0  .00001 .00015 0(1) 037942
o™l .049296 (.049344)
005  0(1) 038399
oY) .049433 (.04977)
.00001  0(1) 03793
o) .049279 (.049276)
0 .0001 .00015 O(1) 037945
o™} .049300 (.049347)
005  0(1) 038403
oY .049636 (.05182)
.00001  0(1) 038085
o’y .04944 (.049455)
0 .005  .00015 O(1) .038098
o™y .049437 (.049475)
005  0(1) .038557
o™y .0499188 (.05200)

The figures in ( ) are computed using Chattopadhyay expansion [11].
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